Monsu

A management information system for multiple-use forestry

Timo Pukkala
Contents

- Background
- Monsu tools
 - Simulation tool
 - Planning tools
 - Decision support tools
Planning and decision analysis

- **Planning**
 - finds the *optimal* way to use resources
 - optimality depends on *preferences*
 - always optimisation
 - always utility maximisation

- **Decision analysis**
 - all analyses that precede decision
 - includes planning, *plus*
 - analysis of preferences, qualitative evaluations, etc.

- **Decision is subjective**
Planning and decision-analysis

- Decision maker
 - Preferences
 - Objectives and constraints
 - Forest ecosystem
 - Inventory data
 - Models
 - Information about alternatives
- Comparisons
- Decision
Quantitative approach to planning

- Define the problem
- Develop a model
- Acquire input data
- Develop a solution
- Test the solution
- Analyse the results
- Implement the results
Information systems used in planning

- Decision Support System
- Planning System
- Simulation System
- Data Management System
- Measurement System
- Forest Ecosystem
Monsu simulation tool

- Treatment schedules for stands
 - Automatically
 - Manually

- Information for the planning model

- Results in a Decision Space
What is simulated

- Initial stand
 - stand-level data, tree-level growth models
 - diameter distribution predicted
 - calibrated using GP

- Stand development
 - regeneration
 - growth
 - mortality

- Treatments
 - cuttings, growing stock treatments
 - site treatment
What else is predicted for schedules?

- **Multiple-use variables**
 - Berry yields
 - expert models
 - Mushroom yields
 - empirical models
 - Scenic beauty and recreation scores

- **Ecological variables**
 - Deadwood volumes
 - Volumes of “unimportant” species
 - Habitat suitability indices
 - Stand “oldness”
Monsu planning tools

- Planning model writer
 - writes a planning model using
 - information from simulations
 - information on preferences

- Solvers
 - mathematical programming
 - heuristics
Solvers

- Mathematical programming
 - LP & GP
- Heuristics
 - Random ascent
 - Hero (systematic ascent)
 - Simulated annealing
 - Tabu search
 - Genetic algorithms
 - Hybrids
Heuristics maximise utility function

\[U = w_1 u_1 \text{(Income)} + w_2 u_2 \text{(Recreation)} + w_3 u_2 \text{(Biodiversity)} \]

\[U = \sum_{k=1}^{m} w_k u_k (q_k) \]
Multiple-use objectives, examples

- Mean berry yield

- Location-weighted mean recreation score
 - Location weight may depend on
 - visibility
 - proximity
 - subjective considerations
Multiple-use example
Ecological objectives, examples

- Deadwood volume
- Area of old forest
- Habitat area

- Spatial autocorrelation
 - Moran’s I

- Habitat–Habitat boundary
- Habitat–Non-habitat boundary
Spatial objectives need adjacency information
Ecological goal examples
Additional decision support tools

- User-friendly interface
 - “Visual interface for interactive multi-objective multi-party optimisation”

- Visualisation tool
Monsu planning interface

If not good, change weights or target levels …
Visualisation, close views
Distant view